

LECTURE 4-B **MAP PROJECTIONS**

*CEEN 4800/6965 - Special Topics
Geographic Information Systems and Hydrologic & Hydraulic Modeling
Uzair (Sam) Shamsi, PhD, PE, GISP
Adjunct Professor
Department of Civil / Environmental & Chemical Engineering*

1

OUTLINE

- ◆ **Chapter 13**
 - ◆ **Scale and Resolution**
 - ◆ **Definition**
 - ◆ **Types**
 - ◆ **Projections in ArcMap**
 - ◆ **Exercises 13a and 13b (optional)**

2

MAP SCALE

Geography Matters

Small Scale
1:1,000,000

Medium Scale
1:62,500 Quad Section

Large Scale
1:1,200 Parcel Map

SANTA-ANA-AVE

ESRI EIGHTEENTH ANNUAL INTERNATIONAL USER CONFERENCE

3

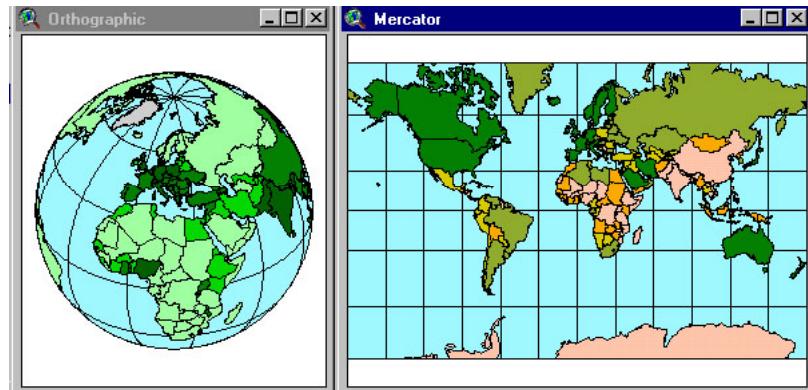
MAP RESOLUTION

0.15 m B&W orthophoto (1993)

0.60 m B&W orthophoto (1998)

1 m color infrared orthophoto (1999)

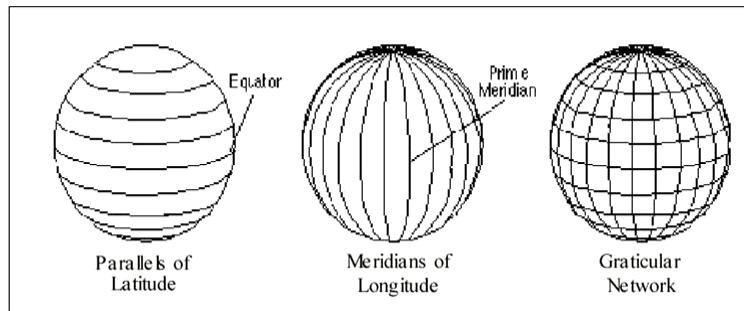
10 m SPOT satellite imagery


30 m Landsat TM satellite imagery (2000)

Ref.: U.M. Shamsi, GIS Applications for Water, Wastewater, and Stormwater Systems (The Blue Book), Chapter 3

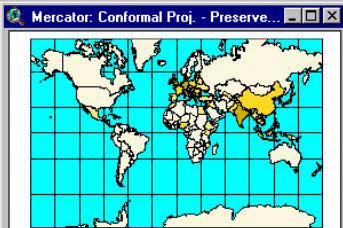
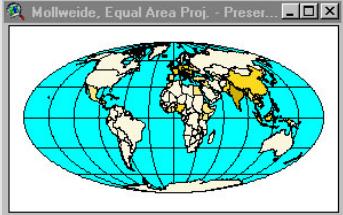
4

MAP PROJECTION


- ◆ Locations on the globe are measured in degrees of latitude and longitude (Geographic or Spherical)
- ◆ Locations on a map are measured using x and y coordinates (Planar)

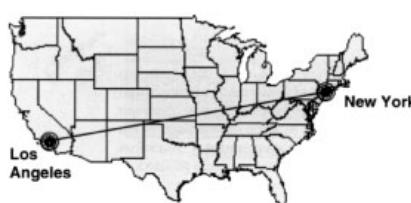
5

MAP PROJECTION



- ◆ A map projection is a mathematical formula which converts locations from spherical to planar coordinates
- ◆ A map is unprojected if coordinates are in decimal degrees (lat./long.)

LATITUDE AND LONGITUDE

6


PROJECTION EXAMPLES

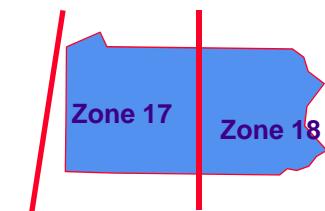
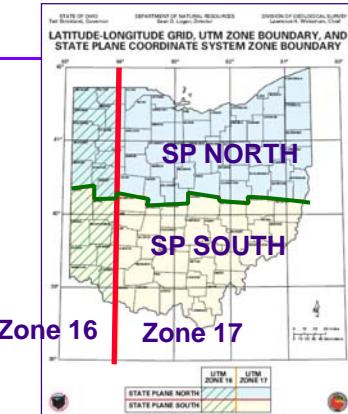
MERCATOR CONFORMAL PROJECTION PRESERVES LOCAL SHAPE		Robinson: Compromize Proj. - Min. ... ROBINSON COMPROMISE PROJECTION MINIMIZES DISTORTION OF SHAPE AND AREA
MOLLWEIDE EQUAL AREA PROJECTION PRESERVES AREA		Azimuthal: Equidistant Proj. - Pre... AZIMUTHAL EQUIDISTANT PROJECTION PRESERVES DISTANCE AND DIRECTION

7

MAP PROJECTION IS NEEDED WHEN ...

- using measurements to make important decisions
- comparing the shape, area, distance, or direction of map features
- aligning a feature theme with an image theme

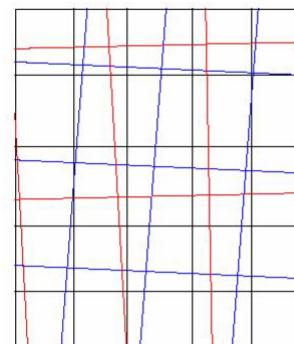
Projection: Mercator
Distance: 3,124.67 miles



Projection: Peters
Distance: 2,452.18 miles

Otherwise, it is not necessary to project.

8

UTM PROJECTION


- ◆ UTM = Universal Transverse Mercator
- ◆ US Army 1947
- ◆ Constant N-S scale
- ◆ Variable E-W scale
- ◆ Units = metric
- ◆ USGS DRGs (topo maps)
- ◆ Two Ohio Zones:
 - ◆ Zone 16 (western 25%)
 - ◆ Zone 17 (rest of the state)

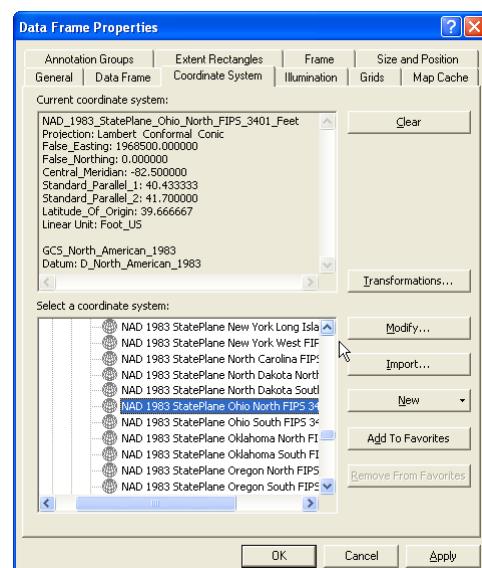
9

STATE PLANE COORDINATE SYSTEM (SPCS)

- ◆ Projection:
 - ◆ If state has major N-S orientation: Mercator
 - ◆ If state has major E-W orientation: Lambert
- ◆ Units = feet
- ◆ Most common in city and county GIS
- ◆ Two OH and PA Zones:
 - ◆ Ohio North
 - ◆ Ohio South

— SPCS Lambert
— Geographic
— UTM

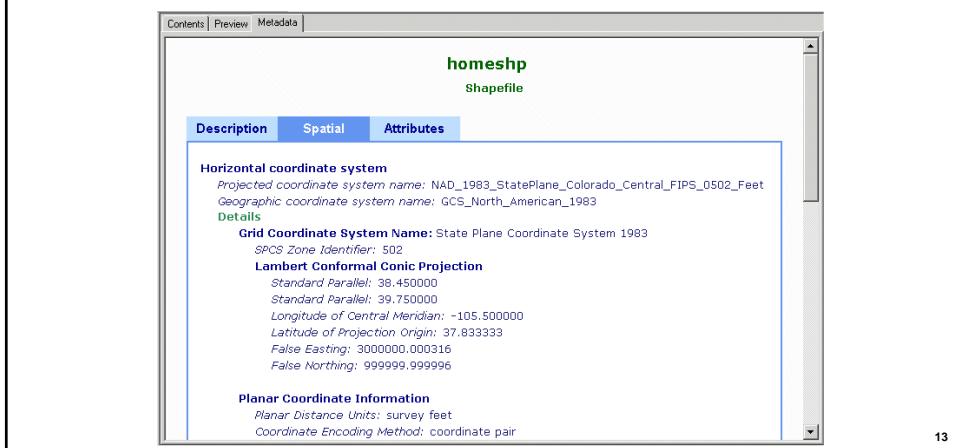
10


STORING PROJECTION INFORMATION

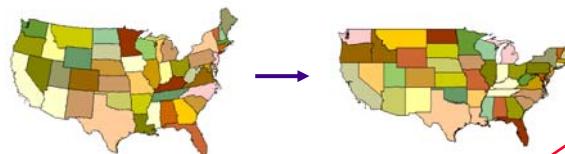
- ◆ Many spatial data formats store the projection details along with the data
 - ◆ Shapefiles: PRJ file (*.prj)
 - ◆ CAD files: World file (*.wor)
 - ◆ Images: AUX file (*.aux)
 - ◆ Geodatabases: RDBMS table

11

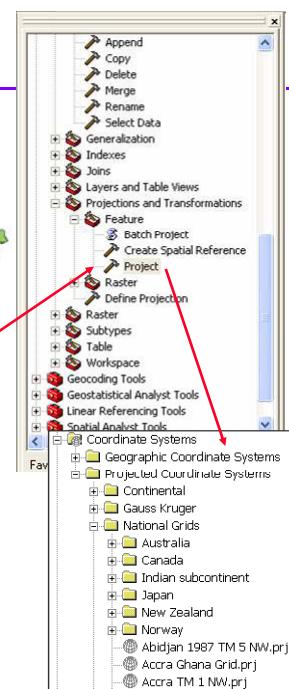
PROJECTIONS IN ARCMAP


- ◆ Many supported projections
- ◆ Predefined projection files
- ◆ Projections are defined for a data frame from the “Coordinate System” tab of the Data Frame Properties window

12


VIEWING PROJECTION INFORMATION

- ◆ Check your data's projection information
 - ◆ In the Spatial tab in the metadata, or
 - ◆ Open the feature class properties in ArcCatalog.



Changing projections

- ◆ Change the way features (or coordinates) are projected

- ◆ Use Project tool in ArcToolbox Data Management tools
 - ◆ Input projection must be defined
 - ◆ Select from predefined coordinate systems
 - ◆ Import the coordinate system from an existing dataset

READING ASSIGNMENT

- ◆ **Chapter 13
Projecting Data in
ArcMap
Pages 331-337**
- ◆ **Might have questions
in exams.**

15

CLASS EXERCISES

- ◆ **Exercise 13a: Projecting Data on
the Fly**
- ◆ **Exercise 13b: Defining a
Projection (Optional)**

16