

LECTURE 5-A

SPATIAL ANALYSIS AND GEOPROCESSING

CEEN 4800/6965 - Special Topics
Geographic Information Systems and Hydrologic & Hydraulic Modeling
Sam Shamsi, Ph.D., P.E.
Adjunct Professor
Department of Civil / Environmental & Chemical Engineering

1

CURRENT SCHEDULE

A screenshot of a Windows Internet Explorer browser window displaying a course schedule. The table has three columns: "No. / Date", "Lecture Name", and "Homework & Solution".

No. / Date	Lecture Name	Homework & Solution
1 1/12/09	Lecture 1. Introduction Supplement: GIS Acronyms	Chapter Link Homework 1 Solution
1/19/2009	Holiday: Martin Luther King Day	
2 1/26/09	Lecture 2- GIS Software	
3 2/2/09	Lecture 3: ArcMap Overview Exercises: 3A, 3B, 4A, 4B Homework No. 2	
4 2/9/09	Computer Lab: Exercises 5A, 5B, 6A, 6B, 7A	
5 2/16/09	Lecture 4A: GIS Data Lecture 4B: Map Projections	Homework 2 Solution
6 2/23/09	Lecture 5A: Spatial Analysis and Geoprocessing Lecture 5B: Related Technologies	
7 3/2/09	Computer Lab: Exercises 8A, 8B, 10A, 11A, 11C, 11D, 13A, 13B	
8 3/9/2009	Spring Break	
9 3/16/09	Mid-Term Exam Lecture (Creating and Editing Data)	
10 3/23/09	Computer Lab: Exercises 14A, 14B, 15A, 15B, 16A, 16B, 16C	

2

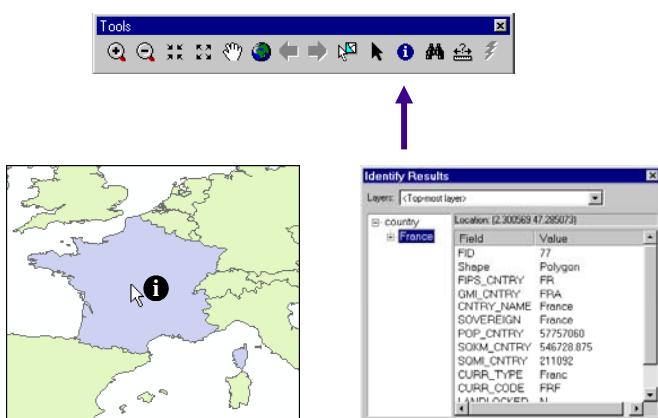
MID TERM EXAM

- ◆ Date: 3/16/09
- ◆ Duration: 1 hour
- ◆ Will start after Lecture 6 (Creating and Editing Data)
- ◆ Content: All lectures and exercises covered up to the previous class (2/23/09)
- ◆ Type: Open book (you can use your book, handouts, notes, and computer)
- ◆ Format: 30 multiple choice questions
 - ◆ 2 minutes / question
 - ◆ Not enough time to search the answers; you should study and know where the answers are

3

PART 1
QUERIES

OUTLINE


- ◆ **Section 4: Getting Information About Features**
 - ◆ Chapter 8: Querying Data
 - ◆ Identify, Find, Measure, MapTips, hyperlinks
 - ◆ Selection methods and layers
 - ◆ Selecting features by attributes
 - ◆ Lab work
 - ◆ **Exercise 8a:** Identifying, selecting, finding, and hyperlinking features.
 - ◆ **Exercise 8b:** Selecting features by attributes
- ◆ **Section 5: Analyzing Feature Relationships**
 - ◆ Chapter 10: Analyzing Feature Relationships
 - ◆ Spatial selection
 - ◆ Calculating summary statistics
 - ◆ Lab work
 - ◆ **Exercise 10a:** Using location queries

5

IDENTIFYING

- ◆ Popup attributes for a specific feature

6

FINDING

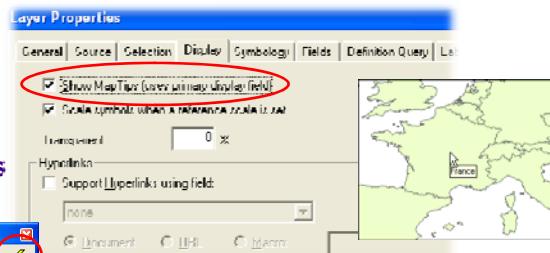
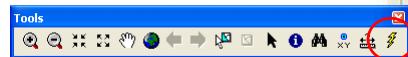
◆ Locate a specific feature or attribute

The screenshot shows the ArcMap interface. At the top is a toolbar with various tools. Below it is a 'Find' dialog box. The 'Find' tab is selected, showing the search criteria: 'Find:' set to 'France', 'In layers:' set to 'Countries', and 'Search:' set to 'All fields' with 'FID_1' selected. A checkbox 'Find features that are similar to or contain the search string' is checked. Below the dialog is a table showing the search results for 'France'. The first row, 'France', has a context menu open, with 'Flash feature' highlighted. The table has columns 'Value', 'Layer', and 'Field'. The 'Layer' column shows 'Countries' and the 'Field' column shows 'CNTRY_NAME'. To the right of the dialog is a map of Europe where France is highlighted in green. A purple arrow points from the 'Flash feature' menu entry to the green highlighted area on the map. A green box labeled 'France flashes' is overlaid on the map area.

7

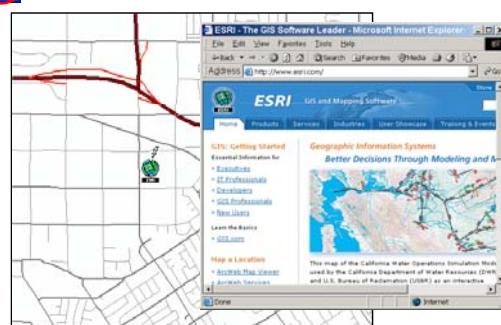
MEASURING

◆ Find linear distances



The screenshot shows the ArcMap interface. At the top is a toolbar with various tools. Below it is a map of Europe with several cities marked. A red line is drawn on the map connecting the cities of Paris, Barcelona, and Sevilla. The 'Layers' panel on the left shows layers like 'Project cities', 'Cities', 'Europe', 'France', and 'Selected countries'. The status bar at the bottom of the map window displays the text 'Segment: 503.316793 Total: 996.117898 Miles'. A red box highlights this text. A purple arrow points from the status bar text to the red line on the map. A green box labeled 'Flash feature' is overlaid on the status bar text.

8

MAPTIPS AND HYPERLINKS


◆ MapTips

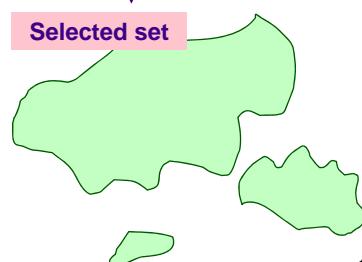
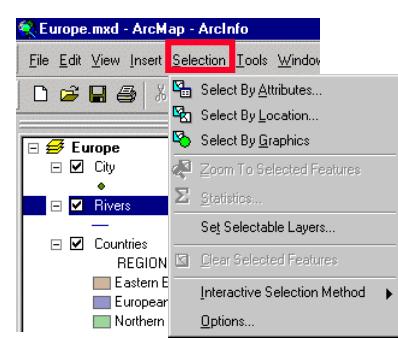
- ◆ Set from Layer Properties window
- ◆ Pointer location displays specific attribute

◆ Hyperlinks

- ◆ Document
- ◆ URL
- ◆ Macro
- ◆ Multiple links per feature

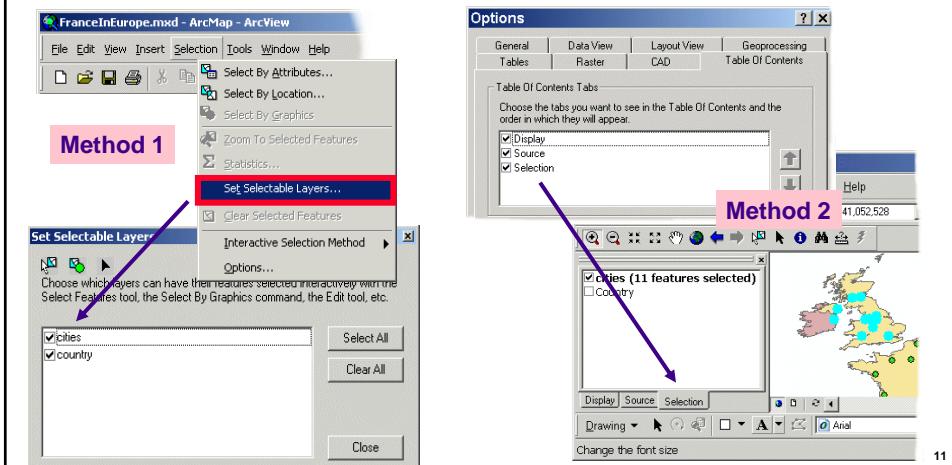
9

AVAILABLE SELECTION TOOLS

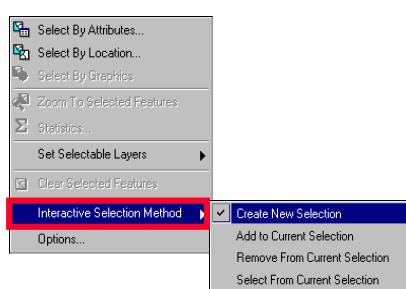


◆ Four selection methods:

- ◆ Interactive (click on a feature or drag a box on the screen to select multiple features)

- ◆ Attributes
- ◆ Location
- ◆ Graphics

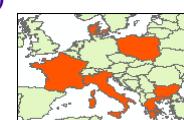

Selected set

10


SELECTION LAYERS

- ◆ Method 1: Specify from Selection menu or
- ◆ Method 2: Add tab to TOC
- ◆ Layers available when using interactive selection tool

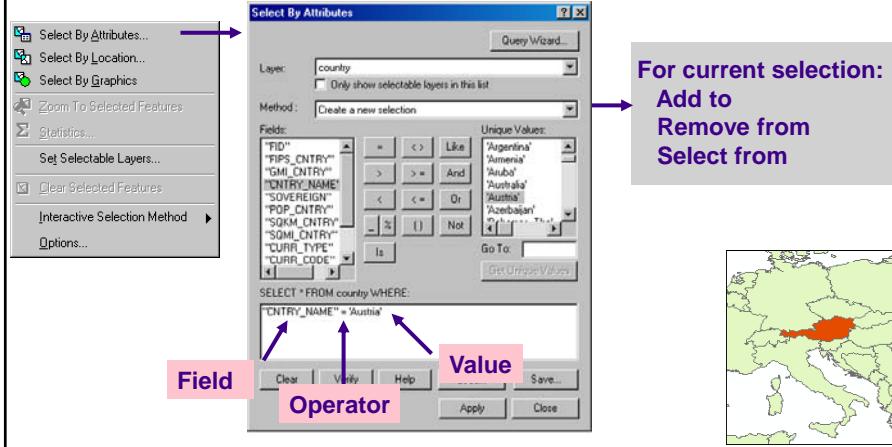
FOUR INTERACTIVE SELECTION METHODS


- ◆ Specify from Selection menu

Create new selection
(France, Poland, Bulgaria, Greece)

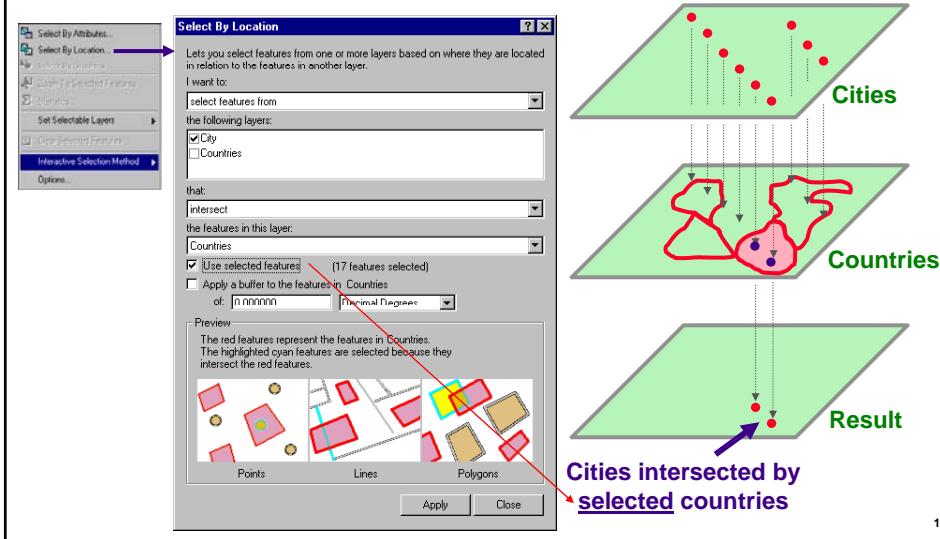
Add to the selection
(Italy)

Remove from the selection
(Bulgaria, Greece)


Select from selection
(France)

12

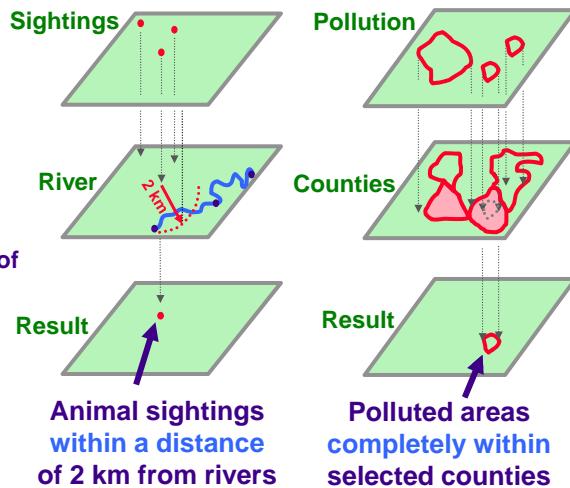
SELECTING FEATURES BY ATTRIBUTES


- ◆ Use a SQL (Structured Query Language) query to select features
- ◆ Save and reload selection expressions

13

SELECT BY LOCATION (SPATIAL QUERY)

- ◆ Use features in one layer to select features in another
- ◆ Power of GIS !!!!



14

LOCATION SELECTION METHODS

Select by location offers 11 selection methods

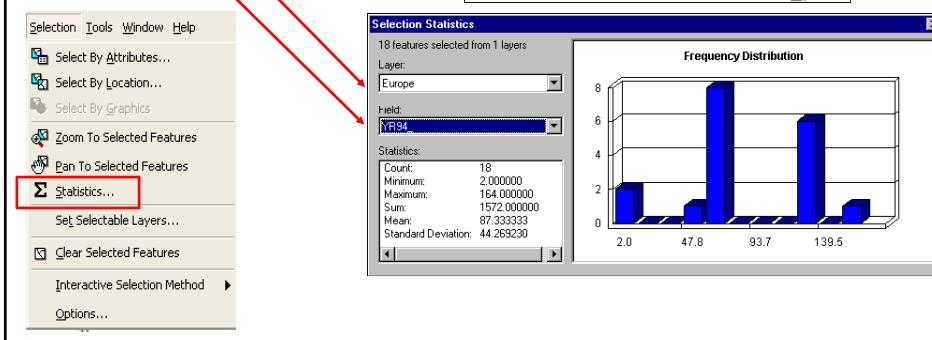
1. Intersect
2. Are within a distance of
3. Completely contain
4. Are completely within
5. Have their centers in
6. Share a line segment with
7. Touch the boundary of
8. Are identical to
9. Are crossed by the outline of
10. Contain
11. Are contained by

15

SELECT BY GRAPHICS

- ◆ Draw a graphic to select features
- ◆ Works with interactive selection methods

1) Draw graphic



2) Select Method

16

CALCULATING SUMMARY STATISTICS

- ◆ Choose **Statistics** from Selection menu
- ◆ Select
 - ◆ Features
 - ◆ Layer
 - ◆ Field

17

LAB EXERCISES

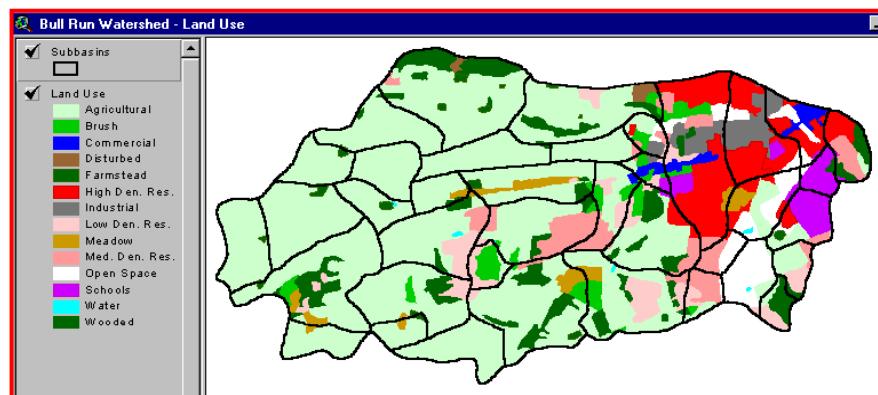
- ◆ **Exercise 8a: Identifying, selecting, finding, and hyperlinking features**
- ◆ **Exercise 8b: Selecting features by attributes**
- ◆ **Exercise 10a: Using location queries**

18

PART 2

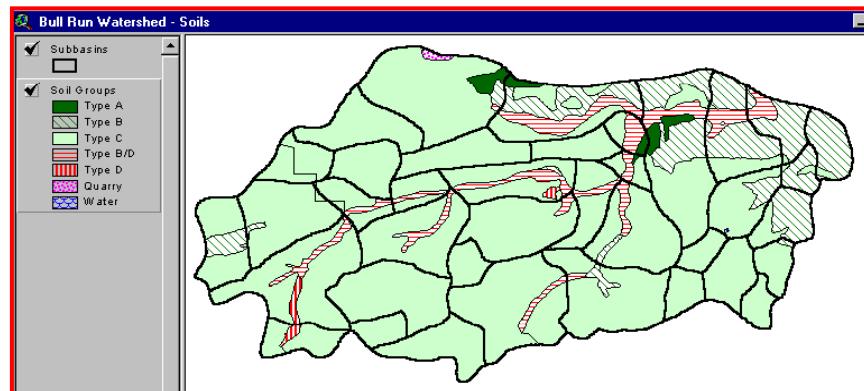
ANALYSES

OUTLINE


- ◆ **Section 5: Analyzing Feature Relationships**
 - ◆ **Chapter 11: Preparing Data for Analysis**
 - ◆ Geoprocessing in ArcToolbox
 - ◆ Lab work
 - ◆ **Exercise 11a: Dissolving features**
 - ◆ **Exercise 11c: Clipping layers**
 - ◆ **Exercise 11d: Exporting data**
 - ◆ **Chapter 12: Analyzing Spatial Data**
 - ◆ Buffering, overlaying, Calculating attribute values
 - ◆ Lab work
 - ◆ **Exercise 12a: Buffering features**
 - ◆ **Exercise 12b: Overlaying data**
 - ◆ **Exercise 12c: Calculating attribute values**

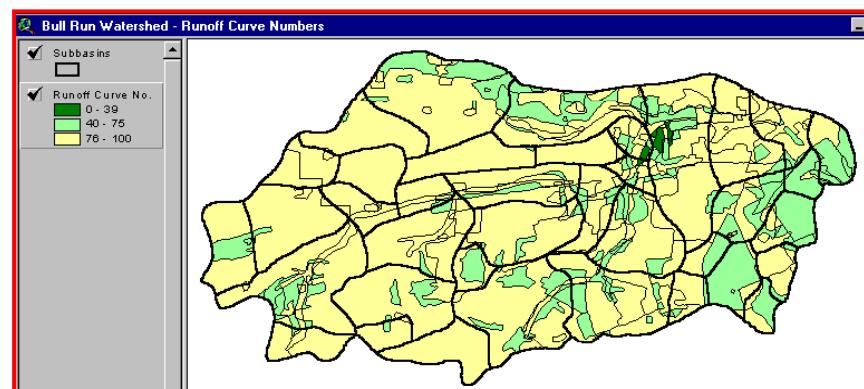
GEOPROCESSING

- ◆ Geoprocessing = spatial analysis
 - ◆ What's the population of a given sewershed?
 - ◆ Overlay of sewershed and census block layers
 - ◆ What's the runoff curve number of a given watershed?
 - ◆ Overlay of watershed, land use, and soil layers


21

OVERLAY LAND USE AND SUBBASIN LAYERS

22


WITH SCS HYDROLOGIC SOILS GROUP LAYER

HSG attributes can be obtained from NRCS SSURGO data

23

TO ESTIMATE RUNOFF CURVE NUMBERS

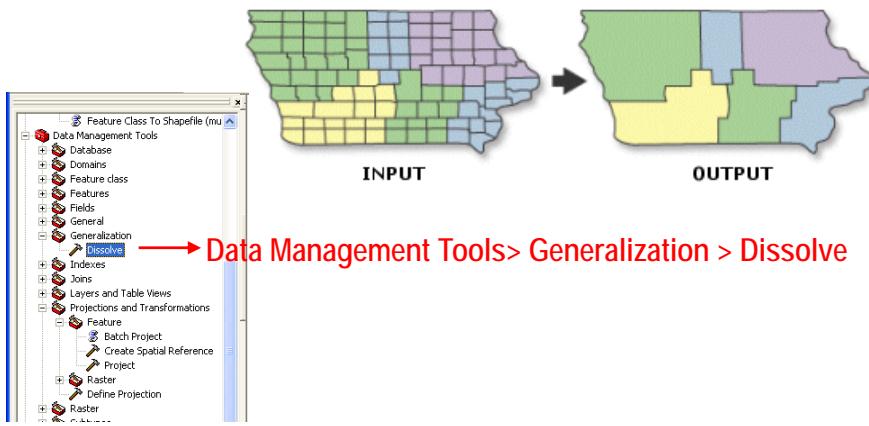
subbasins + land use + HSG = RCN

Rows from NRCS
runoff curve
number table

Land Use	% Imp.	Runoff Curve Number for Hydrologic Soil			
		A	B	C	D
High density residential	51	69	80	87	90
Medium density residential	28	56	71	81	86
Low density residential	16	49	66	78	83

GEOPROCESSING TOOLS IN ARCTOOL BOX

- ◆ Dissolve
- ◆ Merge
- ◆ Clip
- ◆ Buffers
- ◆ Union
- ◆ Intersect

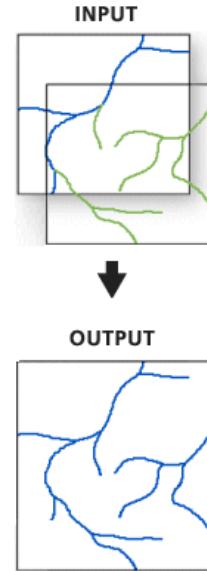

}

OVERLAY OPERATIONS

25

DISSOLVE

- ◆ This tool combines like features based on a specified attribute or attributes.

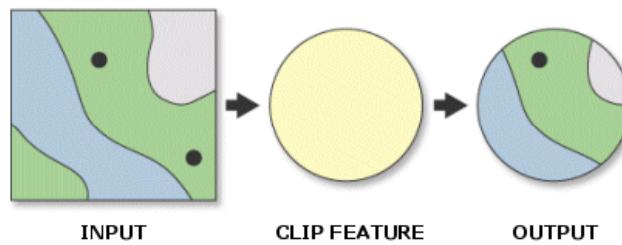


26

MERGE

- ◆ Combines input features from multiple input sources (of the same data type) into a single, new, output feature class.
- ◆ The input data sources may be point, line, or polygon feature classes or tables.

Data Management Tools> General > Merge

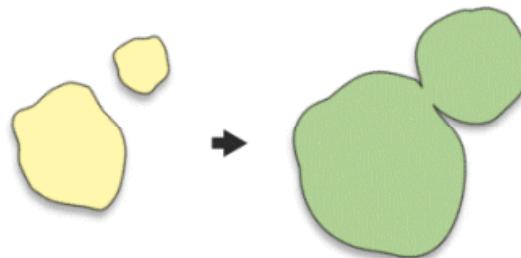


27

CLIP

- ◆ This tool uses a polygon boundary to cut features and their attributes from a feature class.

Works like a cookie cutter.

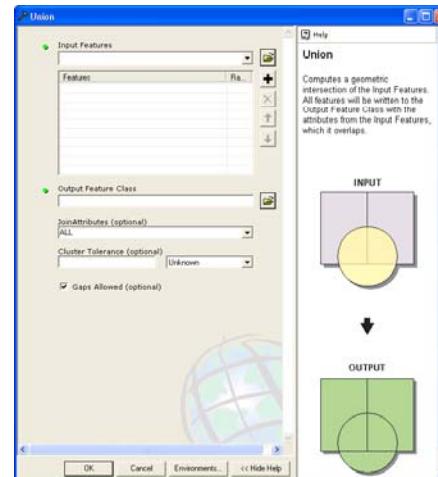


Analysis Tools> Extract > Clip

28

BUFFER

- ◆ A Buffer is an area drawn at a uniform distance around a feature.
- ◆ The Buffer tool creates a new feature class of buffer polygons around either polygon, line, or point features.

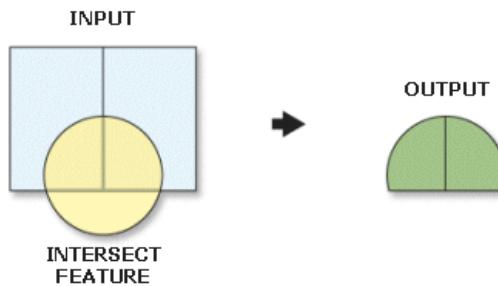


Analysis Tools> Proximity > Buffer

29

UNION

- ◆ Computes a geometric intersection of the Input Features. All features will be written to the Output Feature Class with the attributes from the Input Features, which it overlaps.

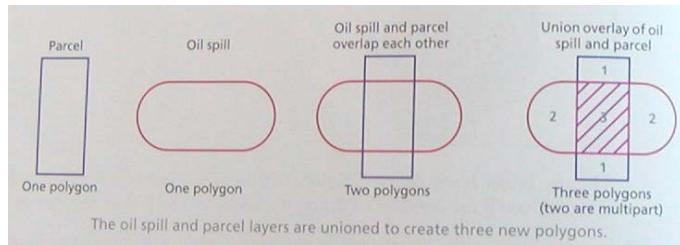


Analysis Tools> Overlay > Union

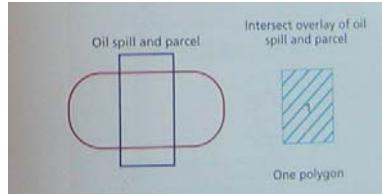
30

INTERSECT

- ◆ This tool builds a new feature class from the intersecting features common in both feature classes. It retains the attributes of both feature classes.



Analysis Tools> Overlay > Intersect


31

UNION VS. INTERSECT

- ◆ Union: Output data set includes non-overlapping areas.

- ◆ Intersect: Output data set includes only overlapping areas.

32

LAB EXERCISES

- ◆ **Exercise 11a:**
Dissolving features
- ◆ **Exercise 11c:**
Clipping layers
- ◆ **Exercise 11d:**
Exporting data

33

HOMEWORK 3: SPATIAL ANALYSIS

- ◆ **Exercise 12a: Buffering features**
- ◆ **Exercise 12b: Overlaying data**
- ◆ **Exercise 12c: Calculating attribute values**
 - ◆ Repeat Exercise 12c with revised data
 - ◆ Calculate attribute values using field calculator
 - ◆ Submit updated results
- ◆ See next slide for details

34

HOMEWORK 3: SPATIAL ANALYSIS

- Complete Exercise 12a (Buffering features). Submit a screenshot or map shown on page 324
- Complete Exercise 12b (Overlaying data). Submit a screenshot or map shown on page 335
- Complete Exercise 12c (Calculating attribute values) and answer the following questions.

Question 1. Before completing Step 7: For harvestable area polygon with Object ID = 5, provide the following data:

Stand Value =

Value Per Meter =

Stand ID =

Question 2. After completing Step 9: For harvestable area polygon with Object ID = 8, provide the following data:

Stand Value =

Value Per Meter =

Stand ID =

Question 3. After completing Step 10: Suppose you underestimated stand unit cost (ValuePerMeter) by 10% in your calculations and would like to repeat your calculations to recalculate the correct bid price. To recalculate the bid price, repeat steps 7 to 10 but modify the expression entered in field calculator (Page 339) to increase the ValuePerMeter by 10% (i.e. multiply it by 1.1). Provide a screenshot of the revised Statistics window and answer the following question:

The original bid price =

The corrected bid price =

Percent difference in the original and corrected bid price =